You need to be signed in for the course navigation features on this site to work. Sign in »

Welcome (back)!

All of the Creative Commons tools on this site are free. We just ask that you sign in / sign up using one of your existing social accounts:

This will take you to their secure sign in tools - we'll never see your password and you don't have to create and remember yet another one.

That said, we will receive your name and email address from them as well as any other profile information you approve for them to share.

And, by signing in, you are agreeing to our full terms of use (including privacy policy and license agreement) found here.



In our earlier topic on Better Understanding Continuous Distributions and Stochastic Modeling via the Normal Distribution, we set the stage for / got half way to some important and practical stuff on estimating population parameters (e.g. when we used the normal case to understand what’s really happening when we talk about continuous distributions).

And even earlier than that, in our topic on Summarizing Data and Estimating Population Parameters Using Descriptive Measures, we got part of the way toward being able to estimate the precision of our estimated parameters (e.g. when we looked at the notion of a standard error).

This topic takes us deeper on both of those things. I want you to be able to estimate a population mean and, when also estimating its precision, get beyond the 68.26% confidence level implied by the standard error we’ve been using. Understanding this and really knowing what a confidence interval is opens a whole bunch of practical doors in engineering fields, including for geospatial applications.


1. If you’re in my class, make sure you’re there for our discussion-based lectures.

2. Work your way through the lessons and self-assessments (under “Resource content”) below. Note that because we covered so many conceptual topics and examples in class, there are only applied problems for this topic.